Correlated electron tunneling through two separate quantum dot systems with strong capacitive interdot coupling.
نویسندگان
چکیده
A system consisting of two independently contacted quantum dots with a strong electrostatic interaction shows an interdot Coulomb blockade when the dots are weakly tunnel coupled to their leads. How the blockade can be overcome by correlated tunneling when tunnel coupling to the leads increases is studied experimentally. The experimental results are compared with numerical renormalization group calculations using predefined (measured) parameters. Combining our experimental and theoretical results we identify transport through Kondo correlations due to the electrostatic interaction between the two dots.
منابع مشابه
SU(4) Fermi liquid state and spin filtering in a double quantum dot system.
We study a symmetrical double quantum dot (DD) system with strong capacitive interdot coupling using renormalization group methods. The dots are attached to separate leads, and there can be a weak tunneling between them. In the regime where there is a single electron on the DD the low-energy behavior is characterized by an SU(4)-symmetric Fermi liquid theory with entangled spin and charge Kondo...
متن کاملQuantum phase transition and underscreened Kondo effect in electron transport through parallel double quantum dots.
We investigate electronic transport through a parallel double quantum dot (DQD) system with strong on-site Coulomb interaction and capacitive interdot coupling. By applying the numerical renormalization group (NRG) method, the ground state of the system and the transmission probability at zero temperature have been obtained. For a system of quantum dots with degenerate energy levels and small i...
متن کاملDouble quantum dots: interdot interactions, co-tunneling, and Kondo resonances without spin
We show that through an interdot off-site electron correlation in a double quantum-dot (DQD) device, Kondo resonances emerge in the local density of states without the electron spin-degree of freedom. We identify the physical mechanism behind this phenomenon: rather than forming a spin singlet in the device as required in the conventional Kondo physics, we found that exchange of electron positi...
متن کاملNonlinear Transport through Coupled Double Quantum Dot Systems
We investigate sequential tunneling transport through a semiconductor double quantum dot structure by combining a simple microscopic quantum confinement model with a Mott-Hubbard type correlation model. We calculate nonperturbatively the evolution of the Coulomb blockade oscillations as a function of the interdot barrier conductance, obtaining good qualitative agreement with the experimental da...
متن کاملPrediction of ferromagnetic correlations in coupled double-level quantum dots.
Numerical results for transport properties of two coupled double-level quantum dots (QDs) strongly suggest that under appropriate conditions the dots develop a novel ferromagnetic (FM) correlation at quarter filling (one electron per dot). In the strong coupling regime (Coulomb repulsion larger than electron hopping) and with interdot tunneling larger than tunneling to the leads, an S=1 Kondo r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 101 18 شماره
صفحات -
تاریخ انتشار 2008